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Abstract--Slightly curved or kinked cracks in anisotropic elastic solids are studied via a perturbation
analysis valid for the second order accuracy in the deviation of the crack surfaces from a straight
line. The analysis is based on complex variable representations in the Stroh formalism and known
solutions for a perfectly straight reference crack. First and second order perturbation solutions are
given for the stress intensity factors at the tip of a finite curved crack under remote stresses in a
solid with arbitrary anisotropy. and are used to establish an approximate relationship between the
apparent and local stress intensitivs at a crack tip, in view of the possible shielding effects of the
crack surfuce morphology near the tip. The role of anisotropy is examined for a number of problems
including circular arc cracks. slightly jogged or kinked eracks. cosine wavy cracks, ete. In several
cases, further insight inte the anisotropic effect on crack curving or kinking is provided by
specializing the general perturbation formulae to cracks in materials with orthotropic symmietry. In
the limiting case of @ crack with an infinitesimal branch kength, comparisen with numerical results
reported in the literature indicates that our perturbation solutions are aceurate over the full range
of practically important branch angles, up to ncarly 150

For anisotropic elastic solids, various fracture criteria such as those based on energy release
rate, G, and stress intensity factors, K and K, cease to give consistent predictions on erik
behaviour. By investigating the effects of mode mixity, material anisotropy and non-singutar
T-stress on the behaviour of a nearly symmetric crack path in an orthotropic solid, we show that
the A-bused {racture criteria lead to very peculiar, perhaps even physically unreasanable, predictions
such as: (i) branch angle at o mixed mode cruck tip becomus infinite as the compliunces perpendicular
and parallel to the crack, §,./8,,. reach a four-fold difference (i) the sign of the branch angle is
reversed when 5,78, > 4, with the consequence of reversing the role of the non-singular 77 stress
on the stability of & symmetric fracture path, namely, the path becomes stable for 7> 0 and unstable
for T < 0, Further, the mode @ stress intensity factor, Ky, becomes a local ptinimum with respeet Lo
crack angle once S,./5,, > 4. In contrast, the G-based criterion gives reasonable predictions such
as: (1) cracks under mixed maode loading always tend to branch toward symmetric orientations; (it}
material and louding asymmetries play an equivalent role in affecting cruck branching near a
symmetric orientation ; (i1} & compressive T stress always tends to stabilize a symmetric fracture
path while a tensile 7 stress destabilizes such a path. For general crack path stability, the role of
anisotropy can be manifested through (i) the value of T-stress at the crack tip and (ii) the variation
of fracture resistance with respect to crack orientation,

INTRODUCTION

Curved or kinked cracks are frequently observed in the fracture of brittle materials under
non-uniform loading or material conditions. For isotropic materials, the phenomenon of
crack kinking, also referred to as branching, under mixed mode loading conditions has
been the subject of extensive theoretical and experimental investigations [e.g. Erdogan and
Sih (1963): Sih (1973); Hussain et al. (1974); Bilby and Cardew (1975); Lo (1978);
Palaniswamy and Knauss {1978); Wu {1979a, b) ; Cotterell and Rice (1980} ; Karihaloo et
al. (1981) ; Hayashi and Nemat-Nasser (1981) ; He and Hutchinson (1989)]. In addition to
the usual singular integral equation approach by modelling the curved crack as a continuous
distribution of dislocations, a convenient perturbation method based on Muskhelishvilli’s
complex variable representations has been developed (Banichuk, 1970: Goldstein and
Salganik, 1970, 1974; Cotterell and Rice, 1980; Karihaloo er af., 1981 ; Sumi et al., 1983
Sumi, 1986) for two-dimensional curved cracks which do not deviate far from a straight
line. The perturbation solutions, which approximately satisfy the boundary conditions
along the crack surfaces, have been used to explain curved or branched crack extensions
during quasi-static crack propagation. Cotterell and Rice (1980) used stress intensity factor
solutions of first order accuracy to examine the stability of the fracture path of a quasi-
statically growing crack under symmetric {mode ) loading conditions: they found that the
path stability is controlled by the non-singular stress term 7', acting in paraliel with the

SA5 29:8-B 947



948 HuastaN Gao and CHENG-HSIN CHIU

crack. in the Irwin-Williams expansion of the crack tip field : the symmetric path s found
to be stable if 7 < 0 and unstable if 7 > 0. This stability criterion has since been widely
used in explaining or predicting crack growth under various loading and material conditions.
Karthaloo er ul. (1981) carried out a second order perturbation analysis for two-dimensional
curved cracks in isotropic materials and reached similar conclusions on issues such as the
fracture path stability. The perturbation analysis has also been extended to curved crack
growth in a finite two-dimensional isotropic body [e.g. Sumi er al. (1933} Sumi (1986)].
Most recently, Gao {(1991a) has presented a perturbation analysis tor three-dimensional
slightly non-planar cracks using the Bueckner—Rice weight function method. In a three-
dimensional configuration. assuming that a planar crack occupies the v,-x; plane with
normal in the v, direction and the crack tront parallel to the x.-axis. there exist three 7T-
stress components, namely, 7,,. 75 and T, Gao (1991a) found that. while the two-
dimensional T-stress, T, plays a dominant role in controlling the stability of the crack
against deflection in the fracture path in the x,—x, plane, the other two T-components, T,
and T.. control the stability of crack surfaces against non-planar perturbations paraliel to
the crack tront. Forexample, a tensile 7'y could give rise to a non-planar crack contiguration
in the form of en-echelon crack front segmentation.

With the advance of composite materials in recent years. it is of growing interest to
understand the behaviour of cracks in anisotropic elastic solids. The problem of branched
cracks under anisotropic material conditions has already received limited investigation
(Miller and Stock. 1989 Obata ¢t al., 1989) using coupled singular integral equation
approaches. Our paper is aimed at developing a two-dimensional perturbation analysis tor
examining the role of anisotropy on curved or kinked crack growth behaviours. We give
perturbation solutions which are valid to the second order accuracy in the deviation of the
crack surfaces from a straight line. Solutions in remarkably simple torms are derived for
the stress intensity fuctors at the tip of a slightly curved crack. Applications of the per-
turbation results include studies of circular arc cracks, slightly jogged or branched cracks,
cosine wavy crack surface profiles, ete. In several cases, our results are specialized to
materials with orthotropic symmetry in order to provide further insight and better under-
standing of the role of anisotropy. The perturbation formulae also provide an approximate
relationship between the apparent values and the crack-tip values for the stress intensity
factors in view of the non-planarity in crack surface morphology near a crack tip. In the
case of cracks with an infinitesimal branch length, comparison with existing numerical
results reported by Obata er el (1989) indicates that the perturbation solutions are,
amazingly, accurate over the full range of practically important branch angle. up to ncarly
150 .

[tis known that various crack growth criteria, such as those based on maximum energy
release rate, G, or maximum mode | stress intensity factor, Ay, or zero mode I K}y = 0,
give consistent predictions for crack behaviour in isotropic solids. However, in the aniso-
tropic case, these fracture criteria cease to be consistent with one another. By investigating
the effects of mode mixity, material anisotropy and 7-stress on the behaviour of a nearly
symmetric crack path in orthotropic solids. we show that the crack growth criteria based
on maximum K, or zero Ky leud to peculiar, perhaps even physically unreasonable, predic-
tions. For example, the A-based criteria suggest that the branch angle at a mixed mode
crack tip becomes infinite as the compliances perpendicular and parallel to the crack
direction reach a four-fold ratio; the sign of the branch angle is also reversed across the
same compliance ratio, with the consequence of also reversing the role of T-stress on the
stability of a symmetric crack path, namely, the path becomes stable for 7> 0 and unstable
for T < 0. in contradiction to the common physical intuition. In contrast. there is no such
peculiarity if the G-based crack growth criterion is used. The energy release rate along a
symmetric crack path is found to be always a local maximum with respect to branch angle.
The maximum G criterion also gives reasonable predictions such as: (i) mixed mode cracks
always tend to branch toward symmetric orientations ; (i) material and loading asymmetries
play an equivalent role in affecting crack branching near a symmetric orientation: (iif) a
compressive T-stress always tends to stabilize a symmetric crack path while a tensile 7T+
stress destabilizes such a path. For general crack path stability. the role of anisotropy can
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be manifested by affecting (i) the value of T-stress at the crack tip and (ii) the variation of
fracture resistance with respect to crack orientation. In addition. we have discovered an
important error in Obata et al. (1989) which has previously resulted in some false con-
clusions on the behaviour of energy release rate with respect to crack branching in aniso-
tropic elastic solids.

COMPLEX VARIABLE REPRESENTATIONS FOR ANISOTROPIC ELASTIC DEFORMATION

Stroh formalism

Our analysis will be based on the elegant anisotropic elasticity theory developed by
Eshelby er al. (1953), Stroh (1958, 1962), Lekhnitskii (1963) and many others [e.g. Savin
(1961); Barnett and Lothe (1973, 1974, 1985): Ingebrigtsen and Tonning (1969); Ting
(1982); Suo (1990). Gao et al. (1991)] over the past nearly four decades. Previous
applications have indicated that the stress analysis of an anisotropic body is often no more
difficult than its isotropic counterpart. because the representation stress functions in the
isotropic case are bi-harmonic while those in the seemingly more complex anisotropic
problems are only harmonic-like functions. In the present literature on the anisotropic
elasticity, there is unfortunately no single preferred notational system. To simplify the
notations, we shall adopt a complex variable representation which is solely based on the
concept of a surface admittance tensor to be described shortly.

With respect to a fixed Cartesian coordinate system x, ( = 1,2, 3) an anisotropic elastic
problem involves solution of the clastic equilibrium equation and the gencralized Hooke's
law :

01/‘ = Cv//ltl“k.h (l)

where g;; denotes the stress components, u, are the displacements, G4, is the fourth-order
moduli tensor and comma means differentiation. For two-dimensional anisotropic problems
in which the deformation ficld is independent of the v, coordinate, Stroh (1958, 1962)
developed a powerful formalism which involves a six-dimensional cigenvalue cquation

N& = pé. ()
where & is a six-dimensional vector,
E' = (u, a5, a3 0, 0, 1) 3
and N is a real 6 x 6 matrix
—~T 'R" T
N=[R,I.,,R,_Q _RTM,]. (4)

Bold letters are used here for vectors, tensors and matrices ; the 3 x 3 matrices T, R, Q are
related to the elastic moduli tensor C,,, as

Qi = Ciers (R)ae = Coi2s (M = Coxae ()
The six eigenvalues p,, which occur as three complex conjugate pairs, can be arranged so
that the first three p, have positive imaginary parts. Let two 3 x 3 matrices A and L have

the components of the first three eigenvectors, a,, and /,. with both indices / and « ranging
over 1, 2, 3. The surface impedance tensor Z and admittance tensor Y arc then defined as

=—iLA™', Y=Z '=iAL"" (6)

Both Z and Y are positive definite and hermitian, and obey the second order tensor
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transformation rule under coordinate rotations in the x,—x, plane (Barnett and Lothe,
1973 Ting. 1982). Barnett and Lothe (1985) have examined in sufficient detail the important
properties of Z and Y in studying surface (Ravileigh) wave and interfacial (Stoneley) wave
problems. The hermitian property

Z=7" Y=YT (7)
indicates the real parts Re [Z]. Re [Y] are svymmetric real matrices while the imaginary parts
Im [Z], Im [Y] are anti-symmetric real matrices.

To simplify the notation, we shall adopt an anisotropic operator () by the convention
[also see, Gao (1991b) : Gao et al. (1991)]:

g+ f(z:p) = Ldiag[f(zi:p). fz2ip2) Sz p)]L 7. (8)
where q is an arbitrary vector and the three Stroh eigenvalues p, (x = 1,2, 3) form three
complex variables =, = x, +p,x;. The operator (*) incorporates the coupling of three Stroh
eigenmodes such that a vector anisotropic complex potential function

D) =q=f(2) 9
can be introduced to represent the displacement field v as

u=Im{Y®()]. (10)

The stress components a,,. which constitute two stress vectors

Ty T
t, = g, v b= Gi2 s (i)
Ty T2
are given by
tl = —RC [(D:(:)J, t: = Rc[(b‘[(:)]. (12)

On an arbitrary curve in the x,-x. planc having normal n and tangent s, it may be shown
that the traction vector t, [i.e. (t,), = g,,] and the hoop stress vector t, [i.e. (t,), = o,,] are

t, = —Re[®,(z)]. t = Re[®,(3)]. (13)

Further, the resultant traction on an arc from point A to point 8 is

B8
p= J t,ds = Re [®(4)] - Re [®(B)]. (1)

A

Stroh quantities for orthotropic materials

A special case of importance is an orthotropic material with three mutually orthogonal
symmetry planes. The in-plane and out-of-plane deformation decouples if the coordinate
plane x,-x, coincides with one of the material symmetry planes. In that case, the Stroh
matrix L for in-plane deformation becomes 2 x 2 as (Lekhnitskii, 1963)

| =P —P:
l,_[ | | ] (15)

It suffices to consider the planc stress condition with 6 x 6 compliance matrix s;, = ;. as
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plane strain solutions can be obtained from plane stress solutions simply by replacing the
compliance matrix as

- 5. (16)

The Stroh eigenvalues for in-plane deformation, p,, §,. p:, p.. are solved from the fourth-
order equation (Lekhnitskii, 1963):

supi=2516p" + (25124 566)P° —25:6p+ 522 = 0. (17)

The surface admittance tensor is

Y = [Sn-[f:ﬂ (p+p2) —i(PIPJSLxI_Sni)I ] (18)
i(p1P:si—512) —SIm(py ' +p37)
The basic relation p,p.f,f. = 51./5;, suggests that
PL+p: 2P
Re[Y] =+« lm[__ _ . ] 19
(vl o AP —ppApitp2) (19)

This matrix appears in the energy release rate expression for cracks in orthotropic solids.

For convenience we shall designate the orientations of material symmetry within the
x-x, planc as x, or [100], and y, or [010]. Following the usual engineering convention [e.g.
Tsai and Hahn (1980)], we shall write the four on-axis orthotropic constants by letter
subscript, S.., S,,, S, and S,,, to distinguish them from numerical subscripts of the general
off-axis orthotropic constants s,,. The on-axis constants are sometimes written in terms of
Young’s moduli, shear moduli and Poisson ratio as (Tsai and Hahn, 1980):

1 1 1 v, vy
¥y Ey» Su = E"y Sxy = - E: = Z-;'

(20)

When the coordinates x, and x, are coincident with the symmetry axes x and y, the Stroh
eigenvalues (for in-plane deformation) satisfy the fourth-order equation

Sap'+(2S,+S.,)p*+S,, =0. 21

The two roots of (21) with positive imaginary parts satisfy

g = TV S,V)'/St.n p(l) +p(2) = 2 v S"“S-V)' + S-"." + S"/z . (22)

2 S,‘X

In this case, eqn (19) reduces to

] 0
Re [Yo] =S5, Im (P?"’Pg)[o \/S——/E—] (23)

The off-axis quantities p,, Y can be obtained from eqns (17) and (18), or alternatively
from rotational transformations:



9s2 HuasiaN Gao and CHENG-HsIN CHIU

p.cosf—sinf

)y = a2 T2 2
p(0) cost+p.sind (24)
cosf sind
YO =ov'e'. o=| 25
) © [—sin() cosf (=3)
where 0 denotes the angle between x, and the material axis x.
Further. for an arbitrary 2 x 1 vector q.
. l FpN—p f S flny—f
Qs fipy= [p./(p_) PP P/ (p2) f(pl)]}{q[}‘ 26)
p=p L —f(p)+f(p) p-flp—p, fp) |lg-

and in particular,

qep = |:[’|+l[’: pIOPI:]{‘[l} 27
- q:

g pt = [ﬁfﬂul’:ﬂ's‘ pip:p +P:)]{ql} o8
—(pi+p2) =pPip: q:) )

[n the isotropic limit, both cigenvalues p, and p, approach the complex unit i and eqn

(26) becomes
. o pf(p) —-f(/’):l {(II} 3¢
_ 4 . _ 29
axf(p Rp[—/(p) LDVp g =

This relation is very usctul for specializing orthotropic elastic solutions in the isotropic case.

SLIGHTLY CURVED FINITE CRACKS

Solution for a straight crack

The perturbation analysis tor slightly curved cracks will be based on the reference
solution for a perfectly straight crack. The solution for a straight crack subjected to remote
stresses t] and t7 is

®(z) = !« /2 —at —tyxs (30)

where

ty =t/ +Re(ty =p] 30D
represents the non-singular T-stress vector in the expansion of the crack tip ficld, which
will play an important role in the perturbation analysis. Note that ¢y is related to both the
stress t{ applied paralicl to the crack and t? normal to the crack. For a crack lying along

the material axis v in an orthotropic solid subject to in-plane loading, one may use (27)
and (22) to show that

T "
t,:[OJ, where T=a—0% [=—. (32)

Thus, the T-stress can be significantly affected by the material anisotropy. Clearly, T in eqn
(32) is always compressive under uniaxial tension, a7, > 0 and o7, = 0. In that case, the
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magnitude of T increases with stiffness parallel to the crack and decreases with that
perpendicular to the crack. Thus, cracks parallel to the stiffer material axis are subjected
to more compressive T-stress than those along the weaker material axis under comparable
stress state. For typical fiber reinforced composite materials, the ratio §,,/S,, can be as
large as 10 ~ 30, so that cracks parallel to fibers will be subjected to much more compressive
T-stress compared to those perpendicular to fibers.

Following the solution in eqn (30) and the representations in eqns (10~12), the stress
intensity factor k™ at the crack tip is

k* = t§\/-:;z 33

and the traction at a distance r ahead of the crack tip is asymptotically given by

= ty—Re[k® «p] —— +0(/7)

J2nr

kﬂ
t, = +0(/7). (34)
T

2nr

The above results will be used as the reference solutions in the perturbation analysis to
follow.

Observe that the stress intensity factors at the above slit-like crack under remote stress
are independent of material constants. Under uniaxial tension loading, the stress intensity
factor solution is K" = a':"z\/na (Ky; = 0). Since the crack is often considered as a degener-
ated elliptical hole, it would be interesting to compare the crack tip stress intensity factor
with the stress concentration at an elliptical hole boundary having aspect ratio a/b > 1. For
comparison, let the elliptical hole be aligned with the material axes and subjected to uniaxial
tension ¢35, The maximum hoop stress occurs at the semi-long axis, x, = a, with the value
[c.g. Savin (1961)]:

2 205,/
Os = a';a{ I+ i‘f} ~ 2N, 35)
b Jp

where

o \/ S8+ S8y +5./2 (36)
25

and p = b*/a denotes the local curvature. Curiously, the stress concentration factor for an
elliptical hole does depend on material constants. In other words, elliptical holes with the
sume aspect ratio and loading but in different materials will have different stress con-
centration factors. This is in contrast to the stress intensity factor, as the measure of
stress concentration at a sharp crack tip, which is completely independent of the material
constants. The moduli cocfficicnt f in eqns (35). (36) is equal to one for isotropic materials
and can be as large as 2 or 3 for fiber reinforced composite materials.

Second order perturbation analysis

Consider a slightly curved crack along a curve ¢ with é* denoting the upper crack face
and ¢~ denoting the lower crack face. When the shape of ¢ is only slightly different from a
straight line ¢, say along the x,-axis over —a < x, < a. one may devise a perturbation
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X,
~+
[+
A X
- ~—
a A(X) a 1
E-

Fig. 1. Slightly curved crack configuration.

procedure to calculate solutions for the curved crack based on the solution ®(z) for a
reference straight crack. Let the curve ¢ be described by a function (Fig. 1):

Xy = A(xy) 37

over —a < x, < a, where A(x,) represents a small perturbation of the crack from its
reference straight position (along the v -axis) to the actual curved position. The solution
to the curved crack can be written in the perturbation form

D) =0y(2)+ P () +D(2)+- - (38)

where @ (2) and ®,(2) are, respectively, the first and second order “disturbance™ terms. As
a crack face point Z along ¢ or ¢ is perturbed to the corresponding reference position
(x,0%) or (x,0 ) along the reference crack, ®(2) is perturbed as

»

A-(x
B(2) = Oy(0) + AWD2 )+ 2 By y(¥) 4B, FAWD (V) +D(x)  (39)

within second order accuracy. Letting the reference crack surfaces ¢* be subjected to the
same traction as those on the curved crack surfaces ¢+, the zeroth order equation is then
obtained as

Re[®@o(x)] = Re[®(3)] = —p onc* (40)

where p represents the resultant traction on an arc from a fixed point to the point Z moving
along the crack surfaces. Taking the real part of eqn (39), then collecting the first and
second order like terms leads to two boundary value equations:

Re [®,(x)] = —A(x) Re[D,.(x)] on c* 41
and

A*(x)
2

Re [®@,(x)] = — D 23(x) —A()P, 2(x) onc* (42)

for determining the unknown functions ® (x) and ®,(x). Equations (41) and (42) have
converted the original curved crack problem to one involving an “effective™ traction along
the surfaces of the reference straight crack.

Now consider the case of remote stresses t¥ and t7. The reference solution ®°(2) given
in eqn (30) has boundary values (®,)* on the upper and lower crack surfaces which satisty
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(®p2)* +(Do2) = =27, (By22)" +(Pp22)” =0. 43)

Summing up the two boundary conditions in (41), one for the upper crack face (c¢*) and
one for the lower crack face (¢7), and then differentiating with respect to x, lead to

[@,,(x)+® ()] +[®, () +D, ()] = 3t,4'(x). (44)

The above Hilbert equation has the solution:

21 A () JSa —E-
ml.l(z)'*'@l.l(:):—';j ty* <( _(C:)\/a_z— ) 45)

In particular. ahead of the crack tip (/x| > a), one may show that

Re[®,,(x)] = —"f' AQya ¢
~e(x=§&)/x*—a’
Reltr*p] (¢ A'(8)\/a’ —c 46)
4 -a(x—§)\/x*

The first order solution (45) also satisfies the crack face condition

—a

Re[®,;(x)] = —

[@,:()+D 2 ()]* +[®12(x) + B 2(¥)] 7 = 4ty xp)A(x). (47)
Similar steps can be used to derive the sccond order solutions. Using the results in eqns
(43) and (47), onc can show that the boundary conditions given in (42) lcad to the following
Hilbert equation :

[@,,(0)+D, ()] + [P () + B, (D] = =4t *p)[A () +A(X)A"(x)].  (48)

The solution to (48) is

2 [ O +ADA O/ =&
() +3,(2) = «f t-,~<” 2@+ AOA O o= dé). (49)
T J-u (:—é)\/:'--a'
Ahcad of the crack tip (Jx| > a), the second order solution gives
Re[@s (1) = REltreAl [F 2@+ AQA"Qla’ =8 (50)

T -u (x=8)/x*-a*

As will be shown below, the perturbation results in eqns (46) and (50) are sufficient for
determining the second-order-accurate perturbation solutions for the stress intensity factors.

At the right tip x, = a of the curved crack, the stress intensity factors are defined such
that the traction along the polar plane w = A4’(d), representing the prospective cracking
line, is asymptotically given by

Qt, = k//2nr 62))
where, by eqn (13),
t, = Re[D,(2)] = Re[®;,(2) + P, ;(x) +sinw®, ,(x) + D, ;(x)] (52)

within the required second order accuracy. The rotation matrix

SAS 29:8-C
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cosw sinw 0
Q= —sinw  ¢cosw O (53)
0 0 1

transforms the traction components in the Cartesian directions (x ., x,) to those in the polar
directions (r, w). Substituting (30). (46) and (50) into (52) and then using (51) lead to the
final solution for the stress intensity factor k which is accurate to the second order in the
deviation of the crack surfaces from a straight line. The result is

o tpasinoRelted] [* L ird
k=Q{Re[t§*\,cosw+psinw]— rEsine e[r*p]J A'(i)\/ﬁ :di

na a—<

Re[t, ¢ s . : +¢ G
+__i[f_!’vlj (47 +A(HA" ()] a——czd;}\/na. (54)
na u a—c

The first term within the curly brace in eqn (54) represents the geometric effect of the crack
tip being tilted relative to the reference straight orientation. The second and third terms are
due to the overall perturbation in crack shape. For an infinitesimal kink or branch at the
tip of a pre-existing straight crack, the second and third terms vanish and the first term
gives the second order accurate solutions for the stress intensity factors for the infinitesimal
kink.

In most cases, with a few exceptions such as when studying the variation of the crack
tip energy release rate (as will be considered later), it is often sufficient to examine the first
order perturbation solutions. Within the first order accuracy, eqn (54) reduces to

: t, [ +& :
k = {m; + 7 Reft: ap]— J A'(;)/" Ed:}\/na (55)
2 nu " -

a

where the first order expansion of Q is

] (W] 0
Q= —w 1 0. (56)
0 0 1

The explicit effect of material anisotropy shows up only in the second term within the curly
brace. However, the T-stress vector t, appearing in the third term is also affected by the
anisotropy via eqn (31). To provide further insight into the anisotropic effects, consider the
in-plane modes (1 and 11) of a crack lying along a4 symmetry planc in an orthotropic solid.
Using eqns (22) and (27), the first order perturbation formulae can be recast into a more
explicit form

| S[ o Jere ) o
- "“((T{]"‘O’:’:\/"‘:)J\ /"(;‘)\/u_““édé}\/nﬂ. (57)
na S u a—g

Thus, within the first order accuracy, the mode [ stress intensity factor is independent of
the material anisotropy and. among the four on-axis orthotropic moduli (S, Sy, Seye Sir),
only S,,/S... the ratio of the stiffnesses perpendicular and parallel to the reference crack,
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affects the mode I stress intensity. For materials with cubic symmetry, §, = S, and the
corresponding perturbation solutions become identical to those in 1sotrop1c solids.
It is worth pointing out that the perturbation solutions in (55) and (57) are consistent
with the corresponding isotropic solutions in the literature {e.g. Cotterell and Rice (1980)]
in which case

KI = {0’?:"’3“2—(90'?1}\/7[0
w ehi—on ¢ ... la+& ..
Ky = {0’?{‘5’ ;G'J:c:_ “%IG—Z—J A'() a_édg}\/;:;- (58)

CIRCULAR ARC CRACK

For the circular arc crack geometry shown in Fig. 2, it can be shown that the integral
in the first order perturbation formula (55) reduces to

a+g nwa
J_ A / 5 == (59)

Substituting the above result into eqn (55) and then using eqn (31) for the T-stress vector
tr. onc finds

7 ) -
k= {m =5 t'{’}\/;m. (60)

This result shows that, within the first order accuracy, the stress intensity factors of a
circular arc crack under remote stresses are independent of material anisotropy. In the
component form, the first order solutions given in (60) are

K = \/na(cé“: - %36?‘:)

Ky = \/:za[a,, + (o',z — 7)(9]
K = \/7;1(0'53 - %a'fa). (61)

Cotterell and Rice (1980) have used existing analytical solutions for the circular arc crack
in an isotropic solid to check the accuracy of eqns (61) ; they found that the mode I stress

Fig. 2. A circular arc crack.
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intensity factor result is accurate within 3% for & < 157 while the mode I result is accurate
within 5% for @ < 40°. The analytical solution to circular arc cracks in anisotropic solids
does not seem to exist yet. However, we expect that eqns (61) are of similar accuracy for
the anisotropic cases. The second order solutions can be similarly obtained from eqn (54).
but we are not pursuing that course here.

A JOGGED CRACK CONFIGURATION

Figure 3 shows a crack with a jog of magnitude A at distance / from the right crack
tip. Such a fracture pattern frequently occurs in fiber reinforced composite materials. For
this configuration, the first order eqn (53) yields.

td [2a—1
k= {t?-}-«i; /HT} /a. (62)

Thus, for such a crack configuration, the effect of anisotropy is fully contained in the T-
stress vector ty. Since t is parallel to the crack plane, the mode I stress intensity factor
remains the same regardless of the jog and anisotropy. However, the mode I1 intensity
factor depends on both the jog geometry and the anisotropy (through T-stress). In the
orthotropic case, we find

A s\ [a-N ~
fo=lan 4 o —en (20} [0 . 3
Ky {m«em(o” o5 S“) ; }\/xa (63)

For this solution to be valid, one should assume the conditions are such that the crack faces
do not come into contact.

APPARENT VERSUS LOCAIL STRESS INTENSITY FACTORS FOR SLIGHTLY CURVED
CRACKS

“Apparent” crack-tip field
As a4 more basic conliguration, consider a semi-infinite straight crack with a given
stress intensity factor k“ and a given T-stress vector t,. The solution can be written as

1 -
Pl2) = ;;k"’ * \/27r:—trx2. (64)

A fundamental problem can be posed as follows. The value of k™, calculated by assuming
that the crack is perfectly straight without accounting for the detailed morphological
microstructure along the crack fuces, represents the “apparent’ stress intensity factors for
the cracked body. Since the actual crack surfaces may not be perfectly flat, rather they may
exhibit some non-planarity due to inhomogeneities on the microscale, the “real” stress
intensity factor k acting at the crack tip will differ from its apparent valuc k “. The questions
are how to determine k from k*, and how the non-planar crack surface morphology, ic.
curving or kinking, combined with material anisotropy, affects the crack growth which is

2a

Fig. 3. A jogeed crack configuration.
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governed by the local stress intensity k, rather than k*. The perturbation analysis can
provide some approximate description and understanding on these issues.

Apparent K™ versus local k

The relation between the apparent stress intensity factor k™ and the local crack tip
value k can be obtained from the perturbation formulae derived in the last section. Letting
the size of the crack approach infinity in the finite crack formula (54), one finds the second
order formula

2 0 A' - d..
(= Relke oot sinoRety o, 2 40
T J-x /_é

2 0 AII 4 A £ A" =
+Re[tr*p]\/;£ @+AQAD 0 o

\/:_é:

where @, again, is the local tangent at the crack tip. Once the crack surface profile 4(¢)
and the T-stress vector tare given, the above equation can be immediately used to calculate
the crack tip stress intensity factor k from the apparent value k . Often it may be sufficient
to examine the first order result

2 (" A@)de
k=0ko+ ) Rc[knp]—t,\[f A1 . (66)
2 2 \/—C

For orthotropic solids cracked along a symmetry axis, the first order formulac become

; SR 17
K, =K, - "2'1\’11

1 [s,, 2 (0 A47(3)dé
K, = K.’.‘+wl\”."'<l - —\/J«')—'I‘\/«J ww(-‘il—f 1Y)
2 Sx.r n - \/—é

Cosine wary crack surfaces
Suppose that the crack surface is of a wavy profile given by (Fig. 4):

2n(x, 1)

A(x,) = Acos p

(68)

where A is the wave amplitude and /1 is the wavelength. The aspect ratio A4// characterizes
the “roughness™ of the crack surface morphology. Substituting (68) into (66) yields

w n 2nl n
k=0k*+ - ® —24t, [Zsin| === + = ).
Qk* + 3 Re [k* = p] Atr\/;51n< 7 +4> (69)

Here @ = A°(0) = (2nA/2) sin 2n//i. Thus, the effect of a wavy crack surfuce increases with
the surface roughness. For such a crack lying along an orthotropic axis, letting ! = 0 so
that the crack tip is at the wave peak, we find

2A

Fig. 4. Cosine wavy crack profile.
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—
2n

K = K7, an,‘:g-—m\/ .

(70)

A

In this case, the wavy crack surface does not affect the mode I stress intensity factor K|
(within first order accuracy). but can have a significant effect on Kj,, especially when the
crack surfaces have a rough morphology.

KINKED CRACKS

When a straight crack is loaded asymmetrically or encounters a weak plane with lower
fracture toughness, the new crack initiates at an angle to the old one. This phenomenon of
crack kinking or branching has been studied extensively in the past literature. In particular,
branched cracks in anisotropic materials have been investigated numerically via coupled
singular integral equations by Miller and Stock (1989) and Obata et al. (1989). In compari-
son. our perturbation analysis provides more explicit formulae to examine the crack branch-
ing in materials with arbitracy anisotropy.

Assume that a finite crack undergoes a branched extension of length / at the right tip,
as shown in Fig. Sa. In this case, the overall projection length of the crack on the v, axis is
2a. Perturbation solutions accurate up to second order in « could be immediately obtained
from eqns (54) and (55). For example, application of the first order formula (35) results in

1 Uy

o, W, wt, . ‘ a& o
k= {Qt: + 2~R<.{t3 *pl— - »(LOs a*+\/l—al)}\/ym (7H

for the single kink in Fig. Sa and

X4 §, gl
2
- o Xy
i ) |
' 2a '
(a)

o
co/ L 39 J

(D)

Fig. . Kinked crack configurations.



Cracks in anisotropic solids 961

2wt ag{ —
K= {Qt’_f +G;)Re [t¥ =p]—- u:c Teos™! f}\ RQ (72)

for the double-kink in Fig. 5b. Here the length parameter a, is given by
ay, =a—Ilcosw. (73)

These solutions become more explicit for the orthotropic material cases. For a double-
kinked crack with main crack along the material axis x,

— 3w
K[ = Jﬁa(a?g" ",‘;"G’.{:;

- U 2w _anf ., [S.
KII = \/nul:ag‘l +w62:(l - 2 ?)— R l ;—12 (UI 1 Sn’)]‘ (74)

Xy

One can also obtain the second order perturbation solutions from eqn (54). if desired.

Once a kink, representing a small deviation from the main crack path, is established
at the tip of a growing crack, the crack opens so that the displacements near the tip are
proportional to the square root of the distance from the tip and the energy release rate is
given by [e.g. Barnett and Asaro (1972)]:

G = K" Re[Y]k. (75

This relation, together with the perturbation solutions for k, can be used to examine the
behavior of energy release rate at crack branching. Primed quantities such as Y’ in eqn (75)
are associated with the crack tip local coordinates &, &, (Fig. 5a). In the orthotropic case,
use of eqn (19) leads to

G = i Im[Ki (P +p2) + 2K Ky ' By = Ki(p\ + PP A (76)
This expression was first derived by Sih er al. (1965).

A special case of particular interest is an infinitesimal kink at the crack tip. In that
case, the perturbation formula in eqn (54) suggests that the solution

k= QRe[t] » /cosw+psinm]/ma an

is accurate to second order in the kink angle . For orthotropic solids, let ¢ denote the
angle between the reference crack coordinates (x,, x,) and the material coordinates (x, ).
Then the crack tip local coordinates (&), .) are connected to {x, ¥) by two consecutive
rotations, © and Q. According to tensor transformation law,

Y = 020Y°'0TQY (78)
where Y? refers to the material coordinates (x, ¥) and the rotation matrices © and  have
been defined in eqns (25) and (53). (For orthotropic symmetry, © is taken as 2x2.)

Combining eqns (75), (77) and (78), the encrgy release rate at the branched crack tip can
be calculated from

G = }k"Re[Y"k (79)

where
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k=0 Re [t¥ «/cosw+psin w]v/"na. (80)

These relations will be used to examine the behaviour of the energy release rate along a
nearly symmetric fracture path. -

The stress intensity factor result in eqn (77) has the feature that k' “2nr is just the
asymptotic traction distribution that exists at the crack-tip along the polar plane w before
kinking. In the isotropic cases, solutions of the same feature have been proposed by Cotterell
and Rice (1980) based on their first order perturbation analysis. By modelling the kinked
crack as a continuous distribution of dislocations, Hayashi and Nemat-Nasser (1981)
proved that the solution of Cotterell and Rice is actually correct to second order. The same
conclusion can also be reached following another approach by Wu (1979a.b). Cotterell
and Rice (1980) compared the second order perturbation solutions with other numerical
results for cracks in isotropic solids and found that the perturbation solutions are valid
over a substantial range of branch angles. For instance, agreement with the numerical
results in Bilby and Cardew (1975) is within 5% up to branch angles as large as 90 .

Our analyses have extended the kinked crack solutions of Cotterell and Rice to general
anisotropic cases. [t is important to compare our perturbation solutions with the numerical
results presented in Miller and Stock (1989) and Obata er ¢l. (1989). The results of Obata
et al. (1989) appear to be more complete than those given by Miller and Stock (1989) ; the
latter authors also attempted to study the branched interface cracks in dissimilar anisotropic
media. We choose to compare the perturbation solutions predicted by eqn (77) with
the corresponding numerical results of Obata er af. (1989). For ease of comparison, we
follow those authors in fixing the orthotropic constants as v, = —S /S, = 0.25 and
S, = 2(8,, = 8.,): the degree of anisotropy is given by the ratio S,../S,, (or §$../S..).

Figures 6, 7 plot the mode T and 11 stress intensity factors, at different degrees of
antsotropy, when the main crack lies purallel to x which 1s taken as the weaker material
axis (5.,/5,, > 1). The perturbation results derived from eqn (77) are shown as solid lines
and compared to the numerical results calculated by Obata er af. (1989). Amazingly, the
perturbation solutions match the numerical results closcly for the full range of branch angle
considered by those authors, up to nearly 150°. This remarkable comparison may suggest
that eqn (77) 1s exact (at least close to) for cracks with ifinitesimal branches. We also use
cqns (75) and (76) to calculate the energy release rate at the branched crack tip, with results
shown in Fig. 8. The factor G in Fig. 8 is defined in eqn (86) to follow. Our energy release
rate results do not agree with those of Obata et al. (1989). Numerical investigation indicates
that the error made by thosc authors lies with the compliance coefficient “'¢, " in their eqn
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Fig. 6. The variation of mode 1 stress intensity factor with crack branching from a weaker matenial
axis.
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Fig. 7. The variation of mode 11 stress intensity factor with crack branching from a weaker material
axis.

(15). corresponding to s, in our notation, which should be transformed to the primed
crack tip coordinates, as in our cqn (76). A major consequence of such crror is that the
maximum energy release rate G would appear to occur at a distinetly different branching
orientation as the degree of anisotropy is increased. In contrast, our result shows that the
cnergy refease rate is always maximized at a symmetric crack orientation, regardless of the
degree of anisotropy.

Figures 9 and 10 plot an asymmetric case in which the crack makes an angle of 30°
with the material axis. The perturbation results for the stress intensity factors again match
the corresponding numerical calculations reported by Obata et al. (1989) for branch angles
up to nearly 150 . The encrgy release rate (Fig. 11) in this case is maximized at a non-zero
branch angle whose magnitude increases with the degree of anisotropy.

The case when the main crack lies along the stiffer axis, i.e. $./S,, < |, was not
considered in Obata ¢r al. (1989). Figures 12-14 plot the stress intensity factors and energy
release rate in this case. Observe that, at a large degree of anisotropy, the mode I stress
intensity factor becomes a local minimum with respect to branch angle. Exact transition

w (degree)

Fig. 8. The variation of energy release rate with crack branching from a weaker material axis.



964 Huanan Gao and CHENG-HsIN CHIU

AR

yiom bl
xtioo

0.8

Aoy,
0.6
Koo,
o0
I

Sua/Syy =1.01
oF 2 ]
L
10 [
-0.2 —
-150 -100 -50 0 50 100 150

w (degree)

Fig. 9. The variation of mode [ stress intensity factor with crack branching from an asymmetric
crack orientation.

will be shown to occur when the compliance ratio S,./S,, = 4. Obata ¢r af. (1989), based
on their incomplete numerical calculations for §.,./S,. > |, concluded that the stress intensity
factors have similar behaviours as the isotropic case regardless of the degree of anisotropy.
Our analysis, with the inclusion of §,./S,, < 1 cascs, shows that the behaviour of stress
intensity factors can change dramatically duc to anisotropic cffects. The crack growth
criterion based on maximum K; would predict asymmetric crack growth even under sym-
metric loading and material conditions, when the stiffnesses in parallel and perpendicular
to the crack exceeds a four-fold ratio. Indeed, as stated by Obata et ¢f. (1989), the usual
crack growth criteria based on (i) maximum K, ; (ii) zero K ; (iit) maximum G, which give
identical predictions in the isotropic case, cease to be consistent for anisotropic solids.
However, our analysis indicates that such peculiarity docs not occur in the behaviour of G,
as claimed by Obata ef af. (1989), rather it is the stress inteasity factors exhibiting drastically
different behaviours and causing peculiar predictions under anisotropic conditions.
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Fig. 10. The variation of mode I stress intensity factor with crack branching from an asymmetric
crack orientation.
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Fig. 11. The variation of energy release rate with crack branching from an asymmetric crack
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Effects of mode mixity and material misorientation on crack kinking

Crack kinking occurs under asymmetric loading and/or material conditions. Thus, it
is interesting to study the behaviour of cracks which are close to symmetry orientations
and subjected to a slightly mixed mode loading. Figure 15 depicts our model problem for
crack kinking in orthotropic solids, where the main crack lies along the x,-axis which makes
a small angle 8 with the material axis x, i.e. the [100] direction. The crack is subjected to a
mixed mode loading such that the apparent stress intensity factors without branching are
Ky = o'?:\/;za and K7 = aK”. Thus, the parameter @ = KV/K[° = 03,/67, denotes the
mode mixity in the system.

Following cqn (77). the stress intensity factors for the above crack configuration with
an infinitesimal kink that deviates by 2 small angle w are given rigorously to the second
order accuracy by

k=QRe[k®* /ecosw+psinw] ~ NRe [k"" * (H— %’p-— (%: - 9_82:)} 81)

1.2 v v v v —— T v

w (degree)

Fig. 12. The variation of mode I stress intensity factor with crack branching from a stiffer material
axis.
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Fig. 14. The variation of energy release rate with crack branching from a stiffer material axis.

X2
y {010]
&
——g/( i
o X
5 1
X [100]

b

Fig. 15. A ncarly symmetric crack path in orthotropic solids under slightly mixed mode loading.
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The Stroh eigenvalues in the x, coordinates, now having angle 8 with the symmetry orien-
tation. may be obtained according to transformation in eqn (24),

0 .
p’cosf—sinf | \ or 2
P cosO+p sin0 pl(1+0°)=0[1+(p")] (82)

where the eigenvalues p° in the principal coordinates (x, ») are given in (22). Using eqns
(27). (28) and (81) yields the local variation of stress intensity factors

< 1 3 2 l S»ry 3 3

Ko = K© [1+w<l 1 ?ﬂ”)]w(s’) (83)

for small parameters w, 6 and «. Here 0(¢”) denotes quantities of at least third order, such
as @', wia, w0, «’,.... The above explicit solutions confirm an observation in Fig. 12
that, for a mode I crack lying along the stiffer material axis x with §,,/S,, > 4, the mode I
stress intensity factor K, becomes a local minimum with respect to the kink angle. This
indicates that the conclusion of Obata et al. (1989), that the stress intensity factors have
similar behaviours as in the isotropic case, is not true in general cases.

Some further remarks can be made concerning the behaviour of stress intensity factors :

(1) Within sccond order accuracy, the stress intensity factors are independent of the
(off-axis) misorientation angle 0.
(2) Under mixed modce conditions, the Kj, = 0 crack growth criterion predicts that the

criack will branch at angle
2K} \/?) !
W= — K (2— 5./ (84)

This prediction is peculiar in that o diverges at four-fold compliance ratio and the sign of
w reverses when S, /S, > 4.

(3) The maximum K| criterion gives the same kinking prediction as eqn (84) when
S./Sc« < 4. When S,,/S,, > 4, K| becomes a local minimum. Even under symmetric con-
ditions, a finite branching angle is required to maximize K.

Thus, the usual K-based crack growth criteria lead to peculiar predictions whose
physical significance is very questionable. For instance, there seems no reasonable jus-
tification or observation for the diverging kink behaviour at the special stiffness ratio 4. In
contrast, the maximum energy release rate criterion, as will be discussed below, gives rise
to no such peculiarities. These facts may simply indicate that the K-based growth criteria
are not suitable for fracture analysis in anisotropic materials.

Using the stress intensity factor solution given in (83), the energy release rate G can
be readily calculated from eqns (75) and (78). It is convenient to carry out the calculation
using the on-axis surface admittance tensor Y given in eqn (23). The final result can be

written as
I S)’}’ : 3
G=Goyl-5|w+2a—| 1~ 5 0] +Ar+0(e7) (85)

where
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Thus, when conditions at a crack tip are slightly asymmetric, the energy release rate is
maximized at a small kink angle given by

S
w=—2a+ (1 - \/S“)e. (38)

In the absence of anisotropy, i.e. S, = S,,. this branch angle is simply w = —~2x =
—2K{§ /K, which is consistent with the corresponding isotropic result derived by Cotterell
and Rice (1980) using the Ky, = 0 criterion.

Assuming that the fracture resistance is uniform, the above behaviour of energy release
rate leads to the following interesting observations:

(1) Loading and material asymmetries (a versus 8) play an equivalent role on crack
branching near a symmetry orientation, and the effect of loading is independent of the
degree of anisotropy.

(2) If the material misorientation 6 is treated effectively as an additional shear mode
in the system, cracks always tend to minimize the overall mode mixity by branching toward
symmetric oricntations.

(3) A perfectly straight and slightly off-axis crack path is possible if the effect of mode
mixity just cancels that of material misorientation, namely, by imposing

o s.,
2= KiIKi = (x - \/ su)(" (39)

This relation, valid when both a and 6 are small, shows that one can make the crack grow
along an ofT-axis straight path with angle ¢ if some preseribed shear stress is added to the
system. Another implication is that when the crack is not aligned along a material symmetry
orientation, there will in general not be a pure mode [ fracture path. The actual path will
correspond to a balance between material and loading influences.

{4) Cracks close to the stiffer material axis will behave differently from those close to
the weaker axis. To see this, ignoring loading asymmetry, it can then be seen from eqn (88)
that cracks tend to branch away from the weaker axis (observe that w has the same sign as
# when §,,/S.. < 1) and branch toward the stiffer axis (@ has opposite sign to 0 when
S,,/S«c > 1). In other words, the anisotropy effects tend to favour the stiffer axis as the
cracking orientation. This behaviour is interesting from the viewpoint that cracks in a fiber-
reinforced composite material are usually expected to grow parallel to fibers. However, as
pointed out by Obata er al. (1989), the possible anisotropic variation in the critical value
of the energy release rate, G.. should also be considered in estimating the actual growth
direction.

The effect of T-stress on the stability of a symmetric crack path

Using the perturbation analysis presented above and the crack growth criterion based
on maximum encrgy relcase rate, one may further address the issue of crack path stability
in the sense of Cotterell and Rice (1980), who have shown that a symmetric crack path in
isotropic materials is stable if the T-stress is negative and unstable if T'is positive. With the
understanding that the same stability issue cannot be addressed in a general sense for
anisotropic materials because the fracture resistance may also be anisotropic, we shall use
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Fig. 16. Crack growth behaviour influenced by non-singular T stress at the crack tip.

our perturbation results to examine the fracture path stability for those materials that do
have a uniform fracture toughness value.

In the isotropic stability analysis of Cotterell and Rice (1980), the growing crack tip
is assumed to be initially at the coordinate origin and subject to a slightly asymmetric
toading system so that 2 # 0. Then it was shown that, when the K, = 0 criterion is imposed
at the branched crack tip. subsequent crack growth can be approximately described as

T [2x\°* o,
A(x) = ng‘[l +C~R—(;(~n—) ]-«H){x } (90)
where
e = —2a, ¢ =4/3, @n

This growth profile tends to deflect the crack back toward the initial path if T < 0, and
deflect the crack further away from the wmitial path if 7> 0 (Fig. 16). Karihaloo er al.
(1981) also used the K, = 0 criterion and determined a similar crack growth profile, but -
with ¢ = 8/3. The latter authors also pointed out that variations in K{¥, K;; due to crack
tip advancet may affect the remaining terms of order x* in the growth profile of eqn (90).

In the anisotropic case, it does not seem proper to use the K, = 0 criterion, as discussed
before. Thus, we shall stick to arguments bused on the maximum energy release rate,
Consider growth by an amount { of a symmetric crack path in an orthotropic solid under
a slightly mixed mode condition representing load system imperfections. This case cor-
responds to § = 0 and « # 0. It is convenient to assume the same crack growth profile in
eqn (90), with @, and ¢ to be determined from maximum energy release rate criterion.
Clearly, the conclusion of Cotterell and Rice regarding the effect of T applies as long as the
value of ¢ which maximizes G is positive.

To simplify expressions in the following denote

= \/Syyflsx‘x' (92)

Using the second order perturbation formulae (54) to calculate the stress intensity factors
along the slightly perturbed fracture path (90) yields

Kf, _ Q—-vyw, Twy (21 32—v)e T Y 3w,ic
Ki _ 3{2-—{‘}{35 33‘(1)9 ?'i't)n\/'z} 9 >9{2—€F)ﬁ)0£‘
k7= § T3 TR R| Tttt T

T ¥ 2w} In\t 27(2-v)c?
+(Kf) n [(6_”8_)0_ 7| 9

The corresponding energy release rate G at the advancing crack tip is found to be

+Crack growth generally enlarges the overall crack size, which may result in variations of the apparent
stress intensity factors.
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where G, has been given in eqn (86). Now maximizing G with respect to the parameters w,
and ¢ for the lowest order term in / leads to

, (6 1S,
Wy = —2X, = T 7~I -1+ 3 S* . (96)

In the isotropic case, the predicted parameter ¢ based on the maximum energy release rate
criterion is

12—n _
€= 2.95. (97)

This is compared to the result ¢ = 4/3 =~ 1.33 of Cotterell and Rice and ¢ = 8/3 ~ 2.67 of
Karihaloo ¢ al. (1980) using the K, = 0 criterion.

The value of ¢ given in eqn (96) which maximizes G remains positive regardless of the
degree of anisotropy, so that the conclusion of Cotterell and Rice (1980) on the crack path
stability may be dircctly extended to the orthotropic crack problems, namely, a symmetric
fracture path is stable if' 77> 0 and unstable it 7 < 0. In fact, a morce heuristic argument
can be used to confirm the above stability analysis. Imagine that an initially straight and
symmetric crack path is subjected to a slight upward curved growth due to imperfections,
so that A’(£) > 0 ncar the crack tip. For simplicity, let the above crack path disturbance
be such that the final crack tip orientation is still parallel to the original crack. In that case,
cqn (67) shows that a positive 7 would induce a negative K, which subscquently causes a
positive branching angle w > 0 according to eqn (88) (z < 0), so that the crack will tend
to grow further away from the initial path, leading to instability. In contrast, a negative T
would induce positive K, and subscquently causes a negative branching o < 0 to deflect
the crack back toward the initial straight path. Following this argument, it is casily seen
that if the K = 0 criterion is used, the role of T on crack path stability would be reversed
when §,,/8. > 4 (because the branch response to a non-zero Ky is reversed), namely, a
symmetric path becomes unstable if T < 0 and stable if T > 0, which scems contradictory
to common physical intuitions.

Onc may also approach the stability issue from yet another perspective, which has
been used by Gao (1991a) in addressing three-dimensional non-planar crack branching
problems. To test the stability of a symmetric crack path, let the crack surface be subjected
to an infinitesimal wavy disturbince (or, cquivalently, assume that an infinitesimal fluc-
tuation in crack surface morphology is incvitable due to imperfections). The symmetric
path is then said to be stable if during subsequent growth the crack tends to propagate back
toward the original position, and unstable if the subsequent growth tends to deflect the
crack further away from the initial path. The kinking tendency in eqn (88) at a non-zero
K, suggests that the stability can be interpreted as requiring that K, have a positive value
at a wave peak, where the stress intensity factor solutions have been given in cgn (70) as
Ky=— TA\/Zn:/}. under symmetric loading. Applying the wave-peak stability condition
K, > 0 immediately leads to the conclusion that a symmetric fracture path is stableif T < 0
and unstable if 7> 0.

Under the same loading, the crack tip T-stress in an orthotropic material could be
different from the corresponding isotropic solution. According to eqn (32), decreasing the
stiffness in the direction perpendicular to the crack or increasing the stiffness parallel to the
crack induces more compressive T stress and thus helps to stabilize the crack path. This
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interesting observation is, again, consistent with the fact that cracks tend to grow parallel
to fibers in unidirectional fiber-reinforced composite materials.

CONCLUSION

In this paper. we have studied a number of problems concerning slightly curved or
kinked cracks in anisotropic elastic solids via a perturbation analysis valid to the second
order accuracy in the deviation of the crack surfaces from a straight line. The analysis is
based on complex variable representations in the Stroh formalism and known solutions for
a perfectly straight reference crack. Perturbation solutions in remarkably simple forms are
given in eqns (54) and (55) for the stress intensity factors at the tip of a slightly curved
finite crack under remote stresses in a solid with arbitrary anisotropy. The perturbation
formulae have also provided an approximate relationship in eqns (65) and (66) between
the apparent and the local stress intensities at a crack tip, in view of the possible shielding
effects of the crack surface morphology near the tip. We have applied the perturbation
analysis to circular arc cracks, slightly jogged or kinked cracks and cosine wavy crack
surface profiles, etc.

Kinking. branching and the stability of cracks in anisotropic elastic solids have been
relatively less explored despite their importance. In this paper, we have attempted to address
these issues in some detail. First, we have compared the predictions from the perturbation
analysis with numerical results of Obata er al. (1989) for cracks with an infinitesimal branch
length. The comparison shows that our perturbation solutions are accurate not only for
small branch angles, but, amazingly, accurate for the full range of practically important
branch angles, up to nearly 150", However, our results for the energy release rate are not
consistent with the corresponding results reported in Obata ef al. (1989). We believe that
the discrepancy can be attributed to an error in the cnergy release rate expression adopted
by Obata ¢r al. which has led to some false conclusions concerning the behaviour of the
cnergy release rate with respect to crack branching in anisotropic solids. Based on our
analysis, the important conclusions are:

(1) The stress intensity factors, K and K, can have drastically ditferent behaviours at
increasing degrees of anisotropy. The A-based crack growth criteria lead to peculiar pre-
dictions on crack branching behaviour. For instance, when the stiffness ratio parallet and
perpendicular to the crack reaches four, the branch angle for mixed mode cracking based
on maximum K or zero K, criteria becomes infinite. When the same stiffness ratio exceeds
four, K becomes i local minimum with respect to the branch angle even under symmetric
condttions, as opposed to always a local maximum in the isotropic cases; in that case, the
maximum K| criterion predicts that a crack will branch away from symmetric loading
orientations. These peculiar, perhaps even physically unreasonable, predictions indicate
that the K-based criteria are very questionable and should not be used as the fracture
criteria for anisotropic solids.

(2) In contrast to the K-based criteria, the crack growth criterion based on maximum
energy release rate G, which is consistent with the K-criteria in isotropic cases, gives
reasonable predictions for anisotropic cracks in all cases considered. In particular, G is
always maximized locally at a symmetric crack path (as in isotropic cases). The maximum
G-criterion predicts that mixed mode cracks tend to branch toward symmetric oricntations.
The material asymmetry about the crack plane due to anisotropy acts effectively as a loading
asymmetry, the implication being that an actual crack path in anisotropic solids is in general
not a “mode [ path, but one which balances the material anisotropy, loading asymmetry,
and possibly also the anisotropy in fracture resistance of the material.

(3) We have also extended the analysis of Cotterell and Rice (1980) on stability of a
symmetric crack path to the anisotropic cases, assuming that the fracture resistance is
independent of the crack orientation. In the anisotropic case, the-original approach taken
by Cotterell and Rice (1980) based on K, = 0 criterion cannot be directly applied. We show
that, if maximum energy release rate criterion is used, the conclusion of Cotterell and Rice
(1980) also applies to the orthotropic crack problems, namely, a symmetric fracture path

SAS 29:8-p
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is stable if the non-singular T-stress term at the crack tip is negative and unstable if T is
positive. The only difference is that the anisotropy can also influence the T-stress itself, as
shown in eqn {32).
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